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Abstract:  Order picking accounts for most of the operating expense of a typical distribution center, and thus is often considered
the most critical function of a supply chain. In discrete order picking a single worker walks to pick all the items necessary to fulfill
a single customer order. Discrete order picking is common not only because of its simplicity and reliability, but also because of its
ability to pick orders quickly upon receipt, and thus is commonly used by e-commerce operations. There are two primary ways to
reduce the cost (walking distance required) of the order picking system. First is through the use of technology—conveyor systems
and/or the ability to transmit order information to pickers via mobile units. Second is through the design—where best to locate depots
(where workers receive pick lists and deposit completed orders) and how best to lay out the product. We build a stochastic model to
compare three configurations of different technology requirements: single-depot, dual-depot, and no-depot. For each configuration
we explore the optimal design. © 2008 Wiley Periodicals, Inc. Naval Research Logistics 00: 000-000, 2008
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1. INTRODUCTION

Within the warehouse, the order picking function typi-
cally accounts for about 55% of operating costs (see [7]).
In general, order picking is commonly considered the most
critical function in a supply chain (see for instance [17]). The
importance of order picking is becoming more apparent as
new e-commerce operations struggle to compete with tra-
ditional bricks-and-mortar operations. Consider for example
e-commerce grocery services (such as Webvan or Peapod).
They distinguish themselves from traditional grocery stores
in that they must absorb the cost to pick customer orders,
whereas for a traditional grocery store the customer performs
this function for free.

In discrete order picking a single worker picks all items
necessary to fulfill a single customer order, and picks no
other items until the order for the customer is complete.
This method of order picking is common because it is sim-
ple and reliable in that a picker need to manage only one
customer order at a time. Furthermore, a customer order is
picked quickly upon receipt without delaying to batch with
other customer orders or to hand off a partially picked order
from one picker to another; and therefore, discrete order pick-
ing is commonly used for real-time operations. For instance,
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discrete order picking is used at some discount stores such
as Service Merchandise, where essentially all items for a
customer order are picked from the in-store warehouse while
the customer waits.

Figure 1 depicts an implementation of discrete order pick-
ing along a linear pick line. The picker retrieves a printed
pick list for a single order at the depot, located at the begin-
ning of the line, along with an empty bin to carry the items.
He walks as far down the line as necessary to retrieve all the
items ordered by the customer, and then returns to the depot
to deposit the picked items and retrieve a new pick list and
empty bin. Other workers may also be simultaneously and
independently picking orders.

One implementation of discrete order picking along a line,
in which the author has been involved, is at Urbanfetch.com,
an e-commerce retailer that delivered a large variety of items
to customers within an hour. Discrete order picking is the
natural picking discipline for Urbanfetch. Once an order is
received it must be picked quickly. A worker retrieves the
pick list at the depot, walks to retrieve all items, and then
returns the items to the depot where they await dispatch for
delivery. Management is able to easily adjust picking capac-
ity on the fly, moving workers to and from restocking or
other areas when needed (even senior management picks
orders when necessary). Thus the advantages for Urbanfetch
is that the picking protocol is simple, reliable, scalable, and
responsive.



2 Naval Research Logistics, Vol. 00 (2008)

Single Depot at Beginning

| 2 3 4 5 5] T 2 9 1
L | Ix] | J¥[x[ [¥] |
oo
O;;::::::::::::::::::::::::H
Depot

Figure 1. Two customer orders, X and Y. Order X has its left-
most pick at location 3, and its rightmost pick at 7. Order Y has its
leftmost pick at 6, and its rightmost pick at 9. With a single-depot
located at the beginning of the line the picker walks along the line
until the order is picked. The shaded portion depicts the part of the
walk path from when the first item for the order is picked until the
last.

Since it is advantageous for workers to avoid the waste
associated with walking between aisles or across conveyor
systems, discrete order picking along a line is common.
Furthermore, discrete order picking along a line acts as a
fundamental building block of other more elaborate pick-
ing schemes. Consider for example a zone picking system
as shown in Fig. 2. Here, five workers are each assigned to
their own zones (for simplicity each zone is shown as its
own entire pick aisle, but it is common for a worker zone
to cover only a portion of an aisle). Each picker remains in
his zone, picking just the items that are necessary for each
customer order. When his picks are complete within his zone
he deposits the items on the conveyor which might then be
carried to a consolidation area before eventually arriving at
the shipping department. (See [17] for an overview of order
picking protocols including discrete and zone picking; and
[1] for an implementation where each worker picks a portion
of a pick line.)

The main disadvantage of discrete order picking is that
the amount of walking per pick can be high. Multiple cus-
tomer orders can, however, be combined into a batch (batch
picking) to help reduce the walking per pick; and our models
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Figure 2. Each of five workers remain in their zones (in this case
an aisle). Here, this zone picking operation is composed of five,
independent, discrete picking operations.
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equally apply to such batch picking operations. Our focus
here is to examine how to configure the system to minimize
the amount of walking. We do not consider the time to actu-
ally pick an item once the picker is in position, since this
time is required (fixed) regardless of the configuration. But
we note that technologies such as pick-to-light systems can
speed up this fixed portion of the efforts of the picker equally
well for all of our configurations.

We consider two primary ways in which one can reduce
the walking required for a discrete order picking operation.

Technology: By the technology we mean the way in which
the picker receives picking information (the pick list)
and the way in which he deposits the items after they
are picked. He may receive the pick list in print form
at a depot, or more technology can be used so that
the pick information is transmitted to him via a mobile
device, such as with RF (radio frequency) technology.
The picked items of an order may be deposited by
walking them back to a depot location; or with con-
veyor technology the completed order can be deposited
anywhere along the pick line onto a conveyor system.

Design: We consider two design issues. First, where to
locate the depot(s)—if any are used. And second, how
best to assign items to locations.

We examine three configurations that each utilize a different
level of technology:

* Single-depot: with no technology investment,

* Dual-depots: with conveyor technology investment,
and

* No-depot: with conveyor and RF technology invest-
ment.

The first configuration is the simplest and most common—
a single depot at location k. Figure 1 shows a common case
where the depot is located at the start of the line, &k = 1.
Figure 3 shows a case when a single depot is located within

Single Depot at k=5
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Figure 3. Two customer orders, X and Y. With a single depot
located at k = 5 the picker first walks to the leftmost pick of order
X, then along the line picking order X until the rightmost pick for
order X is complete. Then he returns to the depot and repeats the
procedure for order Y.
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the pick line. The picker begins each order by retrieving a
pick list from the depot and walking to the leftmost pick, and
then picking all the items in sequence until the rightmost item
is picked, and then walking back to deposit the items at the
depot. It is simple to convince oneself that it is never better
to alter such a sequence of picks by picking an item central
to the order first.

Our next configuration introduces a new design to discrete
order picking—dual depots located at u and v (see Fig. 4).
We have never seen this in practice, except when the two
depots are located at opposite ends of the pick line. The pro-
tocol is that a worker would first pick up a pick list at the
left depot, walk to the left-most pick, and then pick the order
with a left-to-right pass along the line. He would then visit
the right depot to deposit the current order and retrieve a
pick list for a new order, and then make a right-to-left pass
along the aisle to pick the next order. Finally, he returns
to the left depot to deposit the current order and retrieve a
new pick list. A centralized computer might simply alternate
printing pick lists between the two depots, and when print-
ing a pick list to the leftmost (rightmost) depot it prints the
items in a left-right (right-left) sequence so picking is easy.
For many implementations this configuration might require
a conveyor to transport picked orders from the two depots to
shipping.

Finally we consider the best possible discrete picking
implementation, a no-depot configuration, that requires full
technology—eliminating the need to walk to and from depot
locations. A conveyor is installed so that a picker can deposit
acompleted order anywhere along the pick aisle, and an over-
head rail or rack under the conveyor is used to store empty
bins for new orders. The picker has a mobile unit that trans-
mits pick information. This is commonly accomplished using
an RF device, which is often strapped like a large watch on
the wrist. Thus, whenever a worker completes an order he
immediately deposits the completed order on the conveyor,
collects an empty bin, and then pushes a button on his RF

Dual Depots at u=2, v=9
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Figure4. Two customer orders, X and Y. With dual-depots located
atu = 2 and v = 9, the picker starts at the left depot and walks to
the leftmost pick of order X, then walks along the line picking order
X until rightmost pick is completed. He then returns to the right
depot, and then walks to the rightmost pick of order Y, then walks
along the line picking order Y until the leftmost pick is complete
for order Y, before returning to the left depot for the next order.
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Figure5. Two customer orders, X and Y. With no depot the picker
starts at the leftmost pick of order X, then walks along the line pick-
ing order X until the rightmost pick is complete, and then deposits
order X along the conveyor. He then walks to the rightmost pick of
order Y, then walks along the line picking order Y until the leftmost
pick is complete, and then deposits order Y on the conveyor.

device to display the picks necessary for the next order (see
Fig. 5).

We build a stochastic model of the discrete order pick-
ing operation. For each configuration we determine the
expected amount of walk distance required per order. We
do not model the time required to stop and pick each item,
since this is the same regardless of the configuration—
the configurations differ only in the distance walked per
order. Our model is useful in ascertaining the benefit of
technology—an extra depot, a conveyor, or RF devices.
We will find that the benefit depends on whether the order
stream has many pick locations required per order or very
few.

Next we consider design issues for the single- and dual-
depot configurations. First, we will consider where best
to locate single or dual depots given a product layout.
This is a practical design issue when a depot is simply
a printer to output pick lists and a rack to hold picked
orders and thus can easily be moved. However, some-
times the depot locations correspond to shipping docks or
the front door of an e-commerce distribution center. In
such cases we investigate how best to layout the product
when the depot location(s) are fixed. We also examine
how to layout items for the no-depot configuration. Finally,
we solve the full design question for single and dual
depots—how best to both locate depots and layout product
simultaneously.

2. OUR MODEL

We model a stochastic stream of orders in which the
makeup of each order is independently and identically dis-
tributed. We divide the pick line into »n locations or regions.
Each order is represented as an n-tuple, the i-th entry of
which is p; — the probability of at least one pick occur-
ring at location i, and is independent of other locations. For
instance, if the pick line is composed of 20 static shelves,
we might model an order by setting n = 20. Then for each
order, the probability of at least one pick required from shelf

Naval Research Logistics DOI 10.1002/nav
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i is p;, and the probability that shelf i requires no pick is
gi =1—pi.

Our model does not explicitly handle correlation among
the items. However, it is common in practice for strongly
correlated items to be located together. For example at Revco
Drugs, products are stored for picking in the distribution cen-
ter in the same way as retail stores are laid out in order to
facilitate restocking at the retail stores (see [1]). Therefore,
for example, while there is certainly considerable correlation
between different shampoos; they are located in the same rack
and so can be represented by the same p;. Similar items are
also often shelved together because of their physical attrib-
utes. At Urbanfetch.com different shelving is required for
snack chips, video tapes, and ice cream. So, in many practi-
cal settings, we can expect our model to handle some types
of correlation well.

We assume that the distance between adjacent pick
locations is the same and of unit length. This sim-
plifies our notation with little sacrifice to the robust-
ness of our model. If different distances between loca-
tions is needed then dummy locations can be inserted
with p;’s set to 0. Thus, if a picker travels from loca-
tion i to location j then he walks a distance of j — i
units.

3. RELATED WORK

The closest work in the literature appears to be Jarvis and
McDowell [9] who also consider a discrete order picking
system in which items have an independent pick probability.
They concentrate on the product layout design problem for a
single-depot configuration in which a single picker navigates
parallel aisles (a rectangular warehouse) as in Fig. 2. They
assume that once a picker enters a vertical aisle he must tra-
verse the entire aisle. Thus the heart of their model concerns
how far a picker must walk along the horizontal line, which
is the same as our single-depot model. They determine the
best product layout for two special cases of a single-depot
configuration—a depot at the beginning of the line or one
in the center. Our work for the single-depot model general-
izes their work by considering a single depot anywhere along
the pick line. We solve the full design problem of how to
simultaneously layout items and locate the depot.

Jewkes et al. [10] consider multiple pickers on a line in
which an order is passed from the zone of one worker to
another. They consider the simultaneous problem of prod-
uct location, single depot location for each picker, and zone
formation. Each picker within their zone is similar to our sin-
gle depot configuration, but their model of picker movement
is greatly simplified by assuming that only one pick loca-
tion is visited for each pick list retrieved at the depot (see
also [19]). Bartholdi et al. [1] examine bucket brigade order
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picking, in which a team of workers combine efforts along a
pick line to pick customer orders with all zones eliminated.

Much of the other work in which pickers are routed to
items considers batch picking—so that there is a fixed num-
ber of picks (the batch size) per route. Chew and Tang
[5] and Le-Duc and de Koster [12] examine the effects of
batch sizes in a real time system for rectangular warehouses.
With the number of picks per order fixed, they develop a
queueing model where incoming orders are batched before
picking. Rosenwein [16] also examines the order batching
problem.

Roodbergen and Vis [15] show that for batch picking and
uniformly distributed picks in a rectangular warehouse, the
best depot location is in the middle of the front cross-aisle.
Le-Duc and de Koster [11] consider items zoned by storage
classes within a rectangular warehouse. Picks within a class
are uniformly distributed and the total number of picks is
fixed. They develop a stochastic model to estimate zone sizes
and travel distances.

Caron et al. [3] develop a stochastic model of the expected
walking distance for different routing strategies in a rectangu-
lar warehouse. While the number of picks per order is fixed,
the items are stored based on their order frequency. Caron et
al. [4] extends this work to examine how to design the number
of aisles in a warehouse.

Another stream of literature considers the walking distance
required to pick an order in a rectangular warehouse; Ratliff
and Rosenthal [14] solve this special case of the traveling
salesman problem, and Hall [8] considers the expected route
lengths in a rectangular warehouse for a variety of layouts
and strategies.

de Koster et al. [2] provide a nice overview of the order
picking literature. Matson and White [13] provide a general
overview of research in material handling, and van den Berg
[18] provides a nice literature review of the planning and
control of warehousing systems.

4. STOCHASTIC ANALYSIS AND OPTIMAL
DEPOT LOCATIONS

We now derive expressions for the expected walk distance
required per order for each of our three configurations. In
some expressions, it is convenient to define dummy loca-
tions at each end of the pick line where no picks occur with
qo = 1 and g,,.1 = 1. We let the random variable

N = the total number of locations requiring picks

in an order.

Our method of modeling random orders will allow a null
order, N = 0, to occur; however, we will condition all of our
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expected walking distances on N > 0, non-null orders. We
denote the probability of a non-null order by

P:P(N>O)=1—l_[q,». 4.1)

i=1

4.1. Single-Depot

We now determine the expected walk distance per order
when a single-depot is located along the pick line at location
k (see Fig. 3). The depot location k can be any real value in
[1, 7] (in fact, if the depot is actually located off the line, then
dummy locations can be added from the depot to the line,
each with pick probability set to zero). The walking required
per order has two components: The distance (if any) required
to move from the depot left to the leftmost pick and back to
the depot, plus the distance (if any) required to move right
to the rightmost pick and back to the depot. We define two
random variables:

Ly = the distance required to move left from k to the
leftmost pick,

and

Ry = the distance required to move right from & to the
rightmost pick.

Now letting the random variable

Sy = the total walk length per order for a single depot
located at k,

we have
Sy =2(Li + Ry). “4.2)

We now define random variables for the location of the
leftmost and rightmost pick of an order:

L = the location of the leftmost pick,

and
R = the location of the rightmost pick.

Therefore, we have

i—1

P(L=i)=p;[]a; foranyi=1,....n.

j=1

Similarly, we have

n
P(R=1i)=p; H qgj foranyi=1,...,n.
Jj=itl

So we have

Lk]
E[L] =) (k—i)P(L=i), 4.3)

i=1

and

E[R) =Y (i —kPR=i). 4.4)
i=Tk]

Now conditioning on non-null orders, N > 0, we have:

E[S]

)
_ 2(E[Ly] + E[Ri])

P

E[SkIN > 0]

2 [f:
= 2N k=P =1i)
P i=1

+ > (i—-k PR= i)i|. (4.5)

=Tk

4.2. Optimal Single-Depot Location

We now determine where to locate a single depot, k*, that
will minimize E[S¢|N > 0], given by Eq. (4.5). We find that
k* is a median location. In our case this means that k* is inte-
gral, corresponding exactly to a pick location. We choose k*
so that the probability that the picker must walk to the left of
the depot is equal to the probability that the picker must walk
to the right.

THEOREM 4.1: The expected walk distance per order for
a single depot is minimized when the depot is located at

k
ZP(L=i|N>O)

i=1

k* = min {k

—ZP(R:i|N>O)zO}. (4.6)

i=k+1

PROOF: This is a simple extension to the rectilinear
facility location problem on a line (see [6]).

Here we seek to locate a new “facility” of minimal
weighted distance to n existing “facilities,” where existing
facility i is located on the line at point i. The weight for
existing facility i is P(L = i) if the new facility is located to
the right of i and P (R = i) if located to the left. Il

4.3. Dual-Depots

We now determine the expected walk distance per order
with two depots, one located at u and the other at v, where

Naval Research Logistics DOI 10.1002/nav
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u < v. With two depots we assume that the picker alternates
between the depots (see Fig. 4).

We can consider the walking required per order to have
three components: The distance required (if any) from the
left depot to the leftmost pick and back to the left depot, the
distance between the left depot and the right depot, and the
distance required (if any) from the right depot to the right-
most pick and back to the right depot. We let the random
variable

D, , = the total walk distance for dual depots at
locations u and v.

So
D,,=2L,+ (v—u) +2R,.

The expected walking distance per order for dual depots
located at u and v along the pick line is given by

E[D,,|N > 0] = %(ZE[LM]+(U—M)+2E[RU]). 4.7)

We note that this expectation is a generalization of the
single-depot case. That is

E[Dix|N > 0] = E[S|N > 0].

4.4. Optimal Dual-Depot Locations

We now determine the optimal depot locations ©* and v*
that will minimize E[D, ], given by Eq. (4.7). As in the
single-depot case, we again find that both u* and v* are
median locations. Furthermore we can find the location u*
that minimizes E[L, ], and independently the location v* that
minimizes E[R,].

THEOREM 4.2: The expected walk distance per order for
dual depots is minimized when the left depot is located at

u® = min {u

ZP(L=i|N>O)z%}

i=1

and the right depot is located at

ZP(R:i|N>O)z%}.

v* = max {v
i=v

PROOF: The proof here follows in a similar way as the
proof of Theorem 4.1. We find u* by considering an existing
“facility” i to have weight 2P (L = i) when the new facil-
ity is to the right of i, and we add a dummy existing facility
at location n with weight 1 representing the travel between
depots. We then find v* in a similar fashion. g
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‘We note that,
THEOREM 4.3: u* < k* < v*.

PROOF: Since every order requires a pick at or to the left
of k, a pick to the right of k, or both, then Zf:, P(L =
iIN>0)+>",.,P(R=ilN > 0) > 1 for any k. By
the definition of k* we know Zle P(L = i|N > 0) >
Yo P(R=1i|N > 0), Zf‘; P(L =ilN >0)>1/2,
and u* < k*. An analogous argument shows k* < v*. U

OBSERVATION 1: As the picks become more dense, the
optimal dual depot locations go to opposite pick ends (u* —
1 and v* — n), and as the picks become more sparse the
optimal dual depot locations tend toward the optimal single
depot location (#* — k* and v* — k*).

4.5. No Depot

We now determine the expected walk distance per order
with no depot. With no depot we assume that the picker alter-
nates the direction he picks—picking one order left-to-right
and the next right-to-left (see Fig. 5).

Thus the walking distance required per order has two basic
components. First is the distance from the leftmost pick to the
rightmost pick (the length of a pick run). Second, there is the
distance from the end of one order to the start of the next:
from the rightmost pick of one order to the rightmost pick of
the next, or between leftmost picks of consecutive orders.

We let

T = the total walk distance with no depot,

and let
W = the length of the pick run.

We define the random variables for the distance from the end
of one order to the beginning of the next:

Br = the distance between the rightmost pick of one
order to the rightmost pick of another,

and

B; = the distance between the leftmost pick of one
order to the leftmost pick of another.

So we have

1
T =W+ (BL+ B).
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The expected length of a pick run is given by

n—1 n

EWl=Y Y (j—ilP(L=0)P(R = )),

i=1 j=i+1
and conditioning out null orders gives

E[W]

E[W|N > 0] =
[(WIN > 0] 7

For the expected distance between pick-ends we have

n

E[B.] = ZZh — JIP(L=DP(L =),

i=1 j=I

and

n

D D li—jlPR=DPR=)).

i=1 j=1

E[Bg] =

Letting N; and N, be the number of picks in two independent
orders we have

P(N1>00N2>0)=

and thus
E[B;]
[BLINi, N2 > 0] = =
and,
E[Bg]
E[BxINi, N> > 0] = ==

The expected walk distance per order with no depot is
given by

E[T] = EIWIN > 0] + %(E[BLW],Nz - 0]
+ E[BrINy, N2 > O1). .8)

5. OPTIMAL ITEM LAYOUT

We examine how best to layout the product (items) when
the depot location(s), if present, are fixed. We are given n
items that we wish to assign to n locations. For each item j
we have a probability c; that no pick is required foritem j ina
random order. We seek a complete assignment that sets each
gitoacj,fori,j =1,...,n. For convenience we sequence
items according to their ¢; values sothatc; < ¢y < -+ < ¢y.

5.1. Single-Depot Item Layout

In this section we assume that the depot location k is inte-
gral. Jarvis and McDowell [9] solve for the best item layout
for two special cases—when a single depot is at the start of
the line, and when the depot is in the center. Our contribution
here is a branch and bound procedure for the general case.
In particular, we derive a result that characterizes the optimal
layout that not only provides useful cuts in our branch and
bound algorithm, but solves exactly and quickly the special
cases of Jarvis and McDowell.

The conditional expected walking distance per order for
a single depot at an integral location k, Eq. (4.5), can be
rewritten as

E[SiIN > 0]

) k=1 i
=5 |e-v-2]l4

i=1 j=1

n—k i

> [Tan-i]- &0

i=1 j=1

If we consider the assignments to the left (or right) of the
depot in an optimal layout, then a more popular item must
be closer to the depot than a less popular item (this was also
observed in [9]).

THEOREM 5.1: Any optimal layout with a single depot
located at & must assign items so that ¢; > ¢, > --- >

Gk-1 = i, and gk < Ge1 < - = Gn—1 = G-
PROOF: To minimize Eq. (5.1) we wish to maximize the
terms

i

k—1
an/
i=1 j=1

“M»

l_[anrlfj-

Consider the first term of items left of the depot. If one claims
to have maximized this expression and yet there is some
gi < qjwithl <i < j < k, asimple swap will, in con-
tradiction, increase it. An analogous argument holds for the
second term, for items right of the depot. O

Theorem 5.1 leads immediately to the following special
case that was established in Jarvis and McDowell [9].

COROLLARY 5.2: When a single depot is located at the
start of the line, k = 1, the layout where q; = ¢; < ¢ =
¢ <--- < gy = ¢, will minimize E[S;|N > 0].

Theorem 5.1 means that we can view our layout decision
problem as a partitioning problem instead of a sequencing
problem. Once we decide which c; to assign left of the depot

Naval Research Logistics DOI 10.1002/nav
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and which to the right, then the sequence is known. The
number of possible partitions is

n-1) (=1
(k—l )‘ &~ Dl — B! 62

Our branch and bound scheme builds partial solutions by
assigning the c¢; in sequence, from the largest to the smallest,
to the left or to the right of the depot. Partial solutions are
built up by first assigning locations at the ends of the line
and then moving in toward the depot. So for example, a par-
tial solution might be denoted by (L, L, L, R, R,0,0,...,0),
which indicates that the three largest ¢; (c,, ¢,—1, and ¢,_2)
are assigned left of the depot, the next two (c,,—3 and ¢,_4) to
the right of the depot, and the rest of the locations closest to
the depot are unassigned or free.

For a particular partial solution, we let fi be the number
of free locations to the left of the depot and fr be the number
of free locations to the right. We let the probability that no
pick is required so far in a partial solution to the left of the
depot be given by

k=1-fu

qrL = l—[ qi, (5.3)
i=0

and the probability that no pick is required to the right of the
depot be given by

n—k—fr
ar=[] a1+ (5.4)
=0

The next theorem establishes that if one side has more free
locations remaining than the other and a greater probability of
no pick required, then the next largest ¢; should be assigned
to that side.

THEOREM 5.3: If a partial solution has fi > fg and
qr > qgr then there exists an optimal way to layout the
remaining free locations with the next largest ¢; assigned
to the left side. And conversely, if fi < fr and g, < ggr
then there exists an optimal way to layout the remaining free
locations with the next largest c; assigned to the right side.

PROOF: See Appendix, section A.2. g

Thus, Theorem 5.3 shows that ¢, (the least popular item)
should be assigned to the side with a location farthest from the
depot. Corollary 5.2 can be seen to follow from Theorem 5.3,
and we will see that the other special case of a central depot
givenin [9] also follows from this theorem. More importantly,
Theorem 5.3 generalizes the result of Jarvis and McDow-
ell [9] and provides us a computationally useful cut in our
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branch and bound scheme—allowing us to fathom any partial
solution that violates the theorem.

The partitioning aspect of our problem and Theorem 5.1
leads to two natural heuristics. An alternating increasing lay-
out (proposed by Jarvis and McDowell [9]) assigns ¢; in
increasing value starting at the depot and alternating assign-
ments to the left and right of the depot. When one side is full
the other side is filled with the remaining c;’s.

We also introduce an alternating decreasing layout that
assigns c; in decreasing value starting at the end of the pick
line and alternating assignments to the left and right of the
depot. When a location next to the depot is first assigned then
the remaining c; are filled into the remaining locations on the
other side of the depot, moving towards the depot, until the
depot is assigned c;.

We formally define the two heuristics for n locations and
depot at k. Here we assume with no loss of generality that
the integral depot location k < n/2:

Alternating Increasing Layout: Assign ¢; t0 gi—¢j—1),2
foreach j = 1,3,...,2k — 1; to gi4(j/2) for each j =
2,4,...,2k;and to g; for each j = 2k,2k +1,...,n.

Alternating Decreasing Layout: Let & = n — 2(k —
1). Assign c¢; to ggyj— for each j = 1,...,h; to
Gk—(j+1—h)/2) for each ] =h+ 1,/’1 + 3,...,n — 1;
and to gx_14(j4+ny2) foreach j =h +2,h +4,...,n.

We note that when the depot is centrally located, k =
L(n+1)/2], then an AIL and ADL produce the same layout.

The following result established in Jarvis and McDowell
also follows as a consequence of Theorem 5.3. Whenever k
is centrally located then an ADL or AIL is optimal.

THEOREM 5.4: When a single depot is located in the
center of the line, at | (n + 1)/2], then an ADL or AIL layout
will minimize E[S;|N > 0].

PROOF: See Appendix, section A.3. 0

When k is located centrally or at the start of the line,
our branch and bound scheme will return the optimal layout
immediately by fathoming any partial solution that violates
Theorem 5.3. For other &, the two heuristics, ADL and AIL,
are used in our branch and bound scheme for upper bounds.
Lower bounds for a partial solution are generated in a simple
manner: If ¢; is the first (largest) unassigned c; we then assign
Cj,Cj—1,...Cj_f +1 values to the remaining free locations to
the left of the depot,and ¢, c;j_1, . .. cj— s 41 values to the free
locations to the right of the depot. The largest unassigned val-
ues are used on the remaining free locations on both sides of
the depot.
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Table 1. Run times (in cpu seconds on a 750 MHz PC) to obtain optimal layouts for a single depot at location k with n = 40 locations for

three different data sets, r = 0.9,0.7,0.5.

n = 40 Items
k
1 2 4 6 8 10 12 14 16 18 20
r=.9 0.01 0.01 0.03 0.52 5.22 37.71 150.19 395.35 131.30 18.87 <0.01
r=.7 <0.01 <0.01 0.09 4.59 93.51 827.52 2973.56 3363.54 680.27 7.09 <0.01
r=.5 <0.01 <0.01 0.10 4.08 52.26 235.48 393.81 189.23 24.93 0.46 0.01

Table 1 provides run times in CPU seconds for instances
with n = 40 locations. Three different data sets were gener-
ated by setting each ¢; value to 1 — r/ for r = 0.5,0.7 and
0.9. Branching from a partial solution was halted whenever
the lower bound was within 1% of the upper bound. The code
was written in C and run on a 750 MHz PC. For each prob-
lem set, when the depot is near the end of the line (small k)
the runs times are favorable because the number of possible
partitions, by Eq. (5.2), is very small. When the depot is near
the center of the line (large k) the number of possible parti-
tions is the largest; however, the run times are small because
Theorem 5.3 provides very effective fathoming. For interme-
diate depot locations the algorithm is the least effective as the
number of partitions is fairly large and Theorem 5.3 is not as
effective. When 7 is increased beyond 40, the algorithm can
still obtain solutions when k is near the end or the center of
the line; however, some instances with n = 50 fail to return
an optimal solution after 10 h of CPU time.

5.2. Dual-Depot Item Layout

Here we assume that depot locations « and v are integral.
Since a picker must always traverse between u and v for
each order, then we place in any sequence the first v —u + 1
c;j between the two depots. The remaining problem is then
a single-depot layout problem with the remaining c¢; to be
assigned to the left of u and to the right of v. The AIL and ADL
algorithms naturally adapt by only considering the remaining
c¢; to be placed to the left of u and right of v. Thus all our
results for the single depot case apply for the dual-depot case.

We make clear that the solvable special case for a single,
centrally located, depot (Theorem 5.4) corresponds to the
dual-depot case when u — 1 = n — v, i.e. the two depots are
equidistant from the ends of the pick line.

COROLLARY 5.5: When each depot is the same distance
from its respective end of the pick line, then an ADL or AIL
layout will minimize E[D, ,|N > 0].

5.3. No Depot Item Layout

We seek a layout to minimize Eq. (4.8),

1
E[T] = E[W|N > 0]+ E(E[BL|N1’N2 > 0]
+ E[Br|Ni, N> > 0]).

To minimize E[T] directly seems complex. However, what
is desired is a compact pick run so that not only E[W|N > 0]
is small, but also E[B; |Ny, N, > 0] and E[Bg|Ny, N, > 0].
Thus an obvious heuristic is to assume a centrally located
single depot and layout the items according to the ADL
heuristic. This will minimize E[W|N > 0], and thus is
expected to perform well especially when the length of the
pick run dominates the travel between the pick runs. We tested
the ADL using enumeration on hundreds of randomly gener-
ated instances up to n = 7, and it always returned an optimal
layout. It remains an open question if this heuristic is indeed
an exact procedure to minimize E[T].

6. SINGLE AND DUAL-DEPOT FULL DESIGN

We now consider the full design of how to simultaneously
locate depots and layout the items. We know from Section 4.2
that it suffices to locate the depot at an integral location.

THEOREM 6.1: To minimize expected walk distance for
a single depot, the depot can be placed in the center, at
L(n + 1)/2], and the items laid out according to AIL (or
equivalently ADL).

PROOF: To ease the exposition, we assume r is odd. (If
n is even, then we can add a dummy location and a dummy
item of zero pick probability. From Theorem 5.3, we know
the dummy should always be located furthest from the depot,
so this will not effect the expected walk distance of any viable
design for the original instance.)

If one claims to have minimized the expected walk dis-
tance with the depot in the center, but items not in AIL, then
from Theorem 5.4, an AIL will do no worse.
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Suppose one claims an optimal design with depot location
k not in the center with expected walk distance E[S;]. We
can pad the left or right of the line with an even number, d,
of dummy locations and items, each of zero pick probabil-
ity, so that k is now in the center of an extended line. The
expected walk distance of the extended line remains E[St],
since one will never have to walk to the extended portions of
the pick line for adummy item. With the depot in the center of
the extended line, we can by Theorem 5.4, lay out the items
(including the dummy items) according to an AIL and the
resulting expected walk distance will be no worse. By AIL,
d/2 dummy items must be located at the left end of the pick
line, and d/2 on the right end. We can now simply remove
the dummy items with no change in the expected walk dis-
tance. Our depot is now centrally located with an AIL of the
original items with expected walk distance no worse than the
claimed optimal. O

For dual depots the idea is the same—the dual depots
should be centrally located and items laid out according to
AIL. Except now one must decide how far apart the depots
should be—and for this we can simply enumerate the n — 1
possibilities.

COROLLARY 6.2: To minimize the expected walk dis-
tance for dual depots we consider each of the n — 1 possible
number of locations (including zero) between the two depots,
and for each we locate the depots centrally and layout the
items according to AIL. We then choose the best of the n — 1
cases.

7. COMPARING THE CONFIGURATIONS

There is a clear relationship between the expected walking
distance of each configuration.

THEOREM 7.1: For any set of p;’s we have E[S;] >
E[Si] = E[Dy« ] = E[T].

PROOF: E[S|] > E[Si+]holds since S+ is not constrained
by the depotlocation. E[S+] > E[D,- ,~]holds, since, D+ ,-
is free to locate both depots at k*. Also E[Dy«,+] > E[T]
holds since the later need not visit an intermediate point
between order pick ends. O

The configurations can differ significantly depending upon
the p;’s. Figure 6 shows the expected walk distance with
n = 10 and n = 50 locations for each of our configurations
(with the common configuration of a single depot at k = 1
included). For each data point we set each p; to the same
p value, and this value is then varied along the x-axis. The
E[Si<] and E[Dy~,+] curves are determined using the best
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depot locations for each p from Theorems 4.1 and 4.2. As the
pick density, p, increases, the amount of walking increases
for each configuration. (We note that we always condition our
expected walking distances on N > 0, but omit the notation
in this section.)

As the figures indicate clear limiting behavior exist. We
state the following without proof.

LEMMA 7.2: For any fixed number of locations n, as
the pick density increases we have the following limiting
behavior:

lim E[$)] = 2(n — 1)
p—>
lim E[S-] =201 — 1)
p—>
lim E[Du*,v*] =n-—1
p—1

lim E[T] =n — 1.
p—1

As the pick density increases, p — 1, each order requires
a visit to all locations. In this case a single depot anywhere
along the line behaves poorly, forcing the picker to walk twice
the length of the line for each order. On the other hand, a dual-
depot configuration will tend to locate each depot at opposite
ends of the line, so that the walking required per order will be
one length of the line. And similarly, the no-depot configura-
tion will tend to require the picker to walk one length of the
line. We emphasize that two types of behavior emerge—any
single-depot configuration requires twice the walk distance
of either a dual or no-depot configuration.

We have the following limiting behavior as the pick density
gets small.

LEMMA 7.3: For any fixed number of locations n, as
the pick density decreases we have the following limiting
behavior:

lim E[S;]=n—1
p—0

. n?—1
lim E[Si] =
p—0 2n

. nr—1
lim E[Du*’v*] =
p—0 2n

. n? —

lim E[T] =
p—0 3]’[

As the pick density decreases (so that orders tend to have
only a single pick), a single depot at the beginning performs
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Figure 6. Here we show the expected walk distances for each configuration for both n = 10 and n = 50. Each item has the same the p

which we range along the x-axis.

very poorly, as pickers must, on average, walk to the center
of the aisle and back. When a single depot is located in the
center the picker must walk on average about one-fourth of
the line and back. As the pick density gets very small, optimal
dual depot locations will tend toward each other in the center
of the line, and thus will behave the same as a single optimal
depot. (This is because our dual-depot protocol forces the
picker to alternate between the two depots. When the pick
density is very small, dual depots would benefit by a more
powerful and flexible algorithm.) Finally, the full technology
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of a no-depot configuration gains a distinct advantage over
all others, as it is able to better absorb the uncertainties of
fetching small orders. So as the pick density goes to zero,
three types of behavior emerge: a single depot at the begin-
ning requires roughly twice the walking required by optimal
single or optimal dual depots, and optimal single or opti-
mal dual depots require 1.5 times the walking of a no-depot
configuration.

A more realistic situation is one in which the p;’s dif-
fer within a layout. Figure 7 compares the configurations
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E[54]
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Expected Walk Distance
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Figure 7. Here we show the expected walk distances for each configuration for both n = 10 and n = 50 when the p;’s vary according to a

parameter x, so that p = [1,1 - -3), 1= (E)X]

n I n
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for n = 10 and n = 50 with a parameter x guiding how
the p values are dispersed. The set of p;’s are given by

pP= {1, 1-— (%)X 1 — (%)x R ("n;l)x} So for exam-
ple, when x = 1 the plots compare the four configurations for
the problem instance when the p; values vary linearly from
1 down to 1/n. When x is close to 0, the p;’s are skewed
toward 0, and when x is close to 2 the p;’s are skewed closer
to 1. For the single and dual depots we use the optimal full
design, and for no-depot we use an ADL.

E[S,] and E[S-] are very close, and thus for a typical dis-
tribution center in which the p;’s vary, the location of a single
depot has limited impact whenever one is free to layout the
items optimally. More critical is the use of dual or no-depot
technology, both of which outperform a single depot. The
optimal use of dual depots is very powerful, nearly the same
as a configuration with full technology investment. If space
is an issue, so that the ability to add a conveyor in support of
dual depots is prohibitive, then a no-depot configuration may
be preferable.

In conclusion, the technology investment should be a func-
tion of the characteristics of the order stream. When pick
densities are very large, orders tend to require visits to most
pick locations, and thus it is important to avoid single-depot
configurations. The technology of a conveyor or RF system
to facilitate a dual-depot or no-depot configuration may be
warranted. A dual-depot configuration performs very well
overall, yielding significantly to the no depot case only when
the pick densities are very small and uniform.

8. CONCLUSIONS

Order picking is commonly considered the most critical
function in a supply chain; and within the warehouse the order
picking function typically accounts for most of the operating
costs. Furthermore, new e-commerce operations distinguish
themselves from their traditional bricks-and-mortar com-
petition in having to absorb the cost of the order picking
function.

Discrete order picking is common due to its simplicity,
reliability, and its ability to pick orders quickly upon receipt.
However, it can also be wasteful, requiring considerable
walking per pick. Technology is the first way to help reduce
the walking required. The second is through the design—
where to locate the depots (if any are used) and how best to
layout the product.

Our work provides a manager a model to estimate the
impact of different technology investments on his order
picking system. We consider three levels of technology:
(1) no technology (single-depot configuration); (2) con-
veyor technology (dual-depot configuration); (3) conveyor
and RF technology (no-depot configuration). For each level
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of technology we provide algorithms to optimally design the
system—Iocate depot(s) and layout the product.

We find that the effectiveness of each level of technology
depends on the characteristics of the order stream—many
picks per order or very few. We introduce a new configura-
tion (dual depots with conveyor technology) and find that it
performs very well regardless of the type of order stream. The
additional investment in RF technology is only warranted if
the pick density is very small and uniform.

APPENDIX: PROOF OF THEOREM 5.3

We will begin with a short lemma and some new notation.

A.1. Some Technical Preliminaries

We will make use of the following simple lemma.
LEMMA A.l: If x < yanda < Bthenay + Bx < ax + By.
PROOF: (ax + By) — (ay + Bx) = (y —x)(B —«a) > 0.

We also will use the following notation when dealing with a sequence
51,82,

S, J) = si +sisiq1 + Sisiv1si+2 + -+ (SiSiv1-..57)
fori < j. (A1)

And we let the product of the terms of the sequence from i to j,i < j, be
denoted as

ji,j = SiSi+1.--5j. (AZ)

A.2. Proof of Theorem 5.3

Consider a partial solution with fi, free locations to the left of the depot
and fr free locations to the right. We need only consider the one case in
which fi, > fr and g1 > gr. We relabel the free locations to the left of

the depot, gk— fi » Gk—fi +15-- -» qrk—1,as ay,az,...ap so that ay is furthest
from the depot and ay; is closest. We also relabel the free locations to the
right of the depotas b, b 1, .. -, b, by where b 4, is closest to the depot

and b, is farthest.
Rewriting Eq. (5.1), using Egs. (5.3) and (5.4) and the notation of
Eqgs. (A.1) and (A.2), we seek to maximize

q(Lk—1—fu)+qral, f)+q@.n—k— fr)
+qrb(, fr),

and after eliminating the assignments that are fixed we seek to maximize
qra(l, fu) + qrb(1, fr). (A3)
Our theorem states that an optimal layout exists when the next largest c;
is assigned to @; whenever fi, > fr and g1, > gr. Suppose to the contrary

that one claims to have completed the layout and maximized Eq. (A.3) with
a larger c¢; assigned to by instead of a;. We will show that by swapping at
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least a1 and b in such a proposed layout we can obtain a new layout that is
no worse.
We consider two cases.

1. a(l, fL) = b(1, fr) in the proposed layout.
We rewrite Eq. (A.3) as

qrar +qra1a2, fL) + qrbi + qrb1b(2, fr). (A4)

Since by > aj, we know a(2, fi) > b(2, fr), and thus, since
gL > gqr, we have from Lemma A.1, that Eq. (A.4) increases if we
swap a; and b.

2. a(l, fr.) < b(1, fr) in the proposed layout.

We let j be the largest index so that a;, j < i’l,_i (we know such
anindex exists sincea; < by).If j < fr,then werewrite Eq. (A.3)
as

qra(l, j) + qray;a(+1, fL)+qrb(l, j) + qrb1 jb(j + 1, fR).
(A.5)

Since fx < fi, and by our choice of j, we have by ;b(j + 1,
fR) <aija(j+1, fu). And thus, b(j + 1, fr) <a(j + 1, fi).
We rewrite our assumption a(1, fi,) < b(l, fr) as

a(l, j) +aia( + 1, i) < b1, j) + b b + 1, fr).

But sincebil’jb(j + 1, fr) <aja(j+1, fL) we have a(l, j) <
b(l, j).

So if we swap the j values bi,...,b; and ay,...,a; in
Equation (A.5) we get

arb(1, j) +qrbyja(j + 1, fu) + qra(l, j)
+qrar jb(j + 1, fr), (A.6)

which, from Lemma A.1 is larger than Eq. (A.5).

If however, j = fg then we can show in a similar, but somewhat simpler,
fashion that a swap of all by,...,bs, withay,...,az, will result in a new
layout that is no worse.

A.3. Proof of Theorem 5.4

For ease of exposition we assume that n is odd. (If n is even we add a
dummy location and dummy item of zero pick probability to the end of the
line to make n odd and the central depot at k = % Neither the expected
walk distance or an ADL/AIL layout of the original items is affected by the
dummy item/location.)

Using the ADL heuristic, consider any iteration i (the placement of
Cn+1—i) whenever i is odd. Then f; = fr. And gr = cpcp—2 - Cp43—i =
Cp—1Cp—3 - Cpy2—i = gL, since ¢; > c;_1 for each pairing with j =
n,n—2,...,n+3 —1i.So following ADL at any odd iteration and placing
cn+1—i to the right of the depot maintains the requirements of Theorem 5.3.

Now consider iteration i of the ADL heuristic whenever i is even. Then
fL > fR And gR = CnCn—2Cn—4* Cpy2—i = Cp—1Cp—3Cp—5"""Cn43—j =
qL,sincec; < cjy foreach pairing with j =n—2,n—4,...,n+2—i,and
CnCn—2Cn—4 - . Cn42—i = Cn—2Cn—4 ...Cn42—i = Cp—1Cp—3Cn—5...Cn43—i.
So following ADL for any even iteration and placing c,+1—; to the left of
the depot maintains the requirements of Theorem 5.3.
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